Lineare Oligophosphaalkane, XXV¹⁾

A 995

Synthese von $Ph_2P - CH_2 - PH_2$ und $(Ph_2P - CH_2)_2PH$ durch Phosphinomethylierung von PH_3 unter Phasentransferkatalyse

Klaus-Peter Langhans^a, Othmar Stelzer^a* und Norbert Weferling^b

Fachbereich 9, Anorganische Chemie, Bergische Universität-Gesamthochschule Wuppertal^a, Gaußstraße 20, D-5600 Wuppertal 1

Hoechst AG, Werk Knapsack^b, D-5030 Hürth-Knapsack

Eingegangen am 23. November 1989

Key Words: Phosphine / Phosphinomethylation / Phase-transfer catalysis

Linear Oligophosphaalkanes, XXV¹). – Synthesis of $Ph_2P - CH_2 - PH_2$ and $(Ph_2P - CH_2)_2PH$ by Phosphinomethylation of PH_3 with Phase-Transfer Catalysis

Alkylation of Ph_2PH with CH_2Cl_2 under phase-transfer conditions in the system dichloromethane/toluene/water affords $Ph_2P - CH_2Cl$ in high yields. Depending on the reaction conditions employed $Ph_2P - CH_2Cl$ reacts with PH_3 in the two-phase system under phase-transfer catalysis (nBu_4NCl) to yield the tertiary-primary methylenebis(phosphane) $Ph_2P - CH_2 - CH_2$

Funktionelle Methylenbis(phosphane) $RR'P-CH_2 - PR''X^{2}$ zeigen eine vielfältige Koordinationschemie. Sie umfaßt die Bildung anionischer Phosphidobrücken, die oxidative Addition der P-X-Bindungen und die Phosphiniden-Fragmentierung unter Bruch des P-C-P-Skeletts²⁻⁶. Die Si-P-Spaltung der Silylderivate (R, X = Me₃Si) mit CuCl macht neuartige Komplexe mit Elektronenmangel-Phosphidobrücken μ_3 -PRCH₂- zugänglich^{1.7}.

Tertiär-primäre Methylenbis(phosphane) sind von besonderem Interesse, da ihre Fragmentierung in der Koordinationssphäre von Clustern unter Bruch des P-C-P-Skeletts im Sinne einer 1,2-Verschiebung des phosphorständigen Wasserstoffs ("Phosphinidenfragmentierung")⁴) Phosphiniden, {PH}⁸, liefern sollte (Gl. 1). Seine Einbindung in einen Metallatomverband führt zu PH-funktionellen bzw. interstitiellen Phosphidoclustern mit substituentenfreien P-Atomen⁵.

Mit Ausnahme von $Ph_2P - CH_2 - PH_2$ wurden tertiär-primäre Methylenbis(phosphane) bislang nicht beschrieben. Das von Weichmann, Ochsler, Duchek und Tzschach⁹⁾ entwickelte mehrstufige Syntheseverfahren liefert $Ph_2P - CH_2 - PH_2$ nur in mäßiger Gesamtausbeute. Auf der Basis der Ergebnisse unserer Arbeiten über die partielle Alkylierung von $PH_3^{10a)}$ und $PhPH_2^{10b)}$ bot sich die Phosphinomethylierung von PH_3 mit (Chlormethyl)diphenylphosphan, $Ph_2P - CH_2Cl$, als einfachster synthetischer Zugang zu diesem Liganden an. Bei geeigneter Variation des molaren VerPH₂ (2) or the PH functional triphosphaalkane $Ph_2P-CH_2-PH-CH_2-PPh_2$ (3), respectively. Metallation of 2 and 3 with RLi (R = nBu, tBu) and subsequent reaction with Me₃SiCl yields the silyl derivatives 2e and 3b, respectively. The analysis of the ¹H-, ¹³C- and ³¹P-NMR spectra is reported.

hältnisses von PH_3 zu Ph_2P-CH_2Cl sollte diese Reaktion auch zu dem bislang unbekannten PH-funktionellen Triphosphaalkan $Ph_2P-CH_2-PH-CH_2-PPh_2$ führen.

Darstellung und Reaktionen von $Ph_2P-CH_2-PH_2$ (2) und $(Ph_2P-CH_2)PH$ (3)

Das für die Darstellung von 2 und 3 erforderliche instabile $Ph_2P - CH_2Cl(1)^{11a}$ wurde erstmals von Grim und Barth^{11b}) durch Umsetzung von Ph_2PNa mit CH_2Cl_2 in flüssigem Ammoniak in hohen Ausbeuten erhalten. Nach Lindner et al.^{11c}) kann anstelle von Ammoniak Tetrahydrofuran als Lösungsmittel eingesetzt werden. Das nach diesem Verfahren dargestellte $Ph_2P - CH_2Cl$ enthält jedoch stets NaCl. Im Jahre 1978 beschrieben Charrier und Mathey¹² eine Mehrstufensynthese, die mit $Ph_2P - CH_3$ verunreinigtes $Ph_2P - CH_2Cl$ mit ca. 66% Ausbeute lieferte.

Wir konnten nun zeigen, daß diese Verbindung überraschend einfach durch Chlormethylierung von Ph₂PH mit überschüssigem CH_2Cl_2 unter Phasentransferkatalyse mit nBu_4NCl nahezu quantitativ in einem Reaktionsschritt er-

$$Ph_2PH + CH_2Cl_2 + KOH = \frac{Toluol/H_2O}{nBu_NCl} Ph_2P-CH_2Cl + KCl (2) + KOH + H_2O + H_2$$

$$Ph_2P-CH_2CI + PH_3 + KOH \frac{Toluol/H_2O}{nBu_4NCI} = Ph_2P-CH_2-PH_2 + KCI (3)$$

 $60^{\circ}C 2 + H_2O$

$$2 Ph_2P-CH_2CI + PH_3 + 2KOH \xrightarrow{n-Octan/H_2O} Ph_2P-CH_2>PH + 2KCI$$

$$BU_2NCI + PH_3 + 2KOH \xrightarrow{n-Octan/H_2O} Ph_2P-CH_2>PH + 2KCI$$

$$Ph_2P-CH_2 + 2H_3 + 2KOH \xrightarrow{n-Octan/H_2O} Ph_2P-CH_2>PH + 2KCI$$

$$Ph_2P-CH_2CI + PH_3 + 2KOH \xrightarrow{n-Octan/H_2O} Ph_2P-CH_2>PH + 2KCI$$

$$Ph_2P-CH_2CI + PH_3 + 2KOH \xrightarrow{n-Octan/H_2O} Ph_2P-CH_2>PH + 2KCI$$

$$Ph_2P-CH_2CI + PH_3 + 2KOH \xrightarrow{n-Octan/H_2O} Ph_2P-CH_2>PH + 2KCI$$

$$Ph_2P-CH_2CI + PH_3 + 2KOH \xrightarrow{n-Octan/H_2O} Ph_2P-CH_2>PH + 2KCI$$

$$Ph_2P-CH_2 + 2H_2O (4)$$

$$Ph_2P-CH_2 + 2H_2O (4)$$

Chem. Ber. 123 (1990) 995-999 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1990 0009

0009-2940/90/0505-0995 \$ 02.50/0

halten werden kann (Gl. 2). Die Bildung von $Ph_2P-CH_2-PPh_2$ läßt sich bei geeigneter Reaktionsführung vollständig unterdrücken.

Bei zu rascher Zugabe von Ph₂PH zum Reaktionsgemisch kommt es in geringem Umfang zur Bildung von Ph₂P – CH₂ – PPh₂. Um Quartärisierungsreaktionen zu unterbinden, empfiehlt es sich, 1 in Lösung bzw. Reinsubstanz bei tiefen Temperaturen (-20°C) zu lagern.

Die Umsetzung von 1 mit PH₃ und KOH bei 60°C im Zweiphasensystem Toluol/Wasser liefert das tertiär-primäre Methylenbis(phosphan) 2 in praktisch quantitativer Ausbeute (Gl. 3). Es läßt sich durch fraktionierende Destillation im Vakuum (Sdp. 107°C/0.05 mbar) weiter reinigen.

Setzt man 1 mit PH₃ und KOH unter den gleichen Bedingungen jedoch bei erhöhter Temperatur ($80-100^{\circ}$ C) um, so wird im intermediär auftretenden 2 die primäre Phosphangruppierung PH₂ durch 1 phosphinoalkyliert. Es bildet sich das ditertiär-sekundäre Triphosphaalkan 3 in hoher Ausbeute (Gl. 4).

Sowohl 2 als auch 3 sind thermisch sehr stabil und erleiden auch bei längerem Erhitzen auf 150-200 °C keinen Zerfall.

Die H-Atome der PH₂-Gruppierung in 2 werden in CD₃OD-Lösung rasch gegen D-Atome ausgetauscht (Gl. 5, 6). Über das Monodeuteriumderivat **2a** wird **2b** gebildet, das sich im ³¹P{¹H}-NMR-Spektrum durch die 1:2:3:2:1-Quintettfeinstruktur des Hochfeldteils des AMX₂-Spektrums zu erkennen gibt (Spinsystem AMX₂, A, M = ³¹P; X = ²H) (Tab. 1).

Tab. 1. ³¹ $P{iH}$ -NMR-Daten der Verbindungen 1-3b^{a)}

	$\delta(PPh_2)$	δ(PXY) ^{b)}	$^{2}J(PP)$		δ(PPh ₂)	$\delta(PX_2)^{b)}$	² J(PP)
1	-10.5			2d	12.4	-163.5 (197.1)	72
2	- 7.9	-153.0 (194.1)	22.0	2e	15.1	-185.2	124
2a	- 8.6	-155.8 (194.0) (30) ^{c)}	23.0	3	-19.9	-86.8 (203.0)	70.9
2 b	-8.6	-156.7 (30) ^{c)}	24.2	3a ^{d)}	-23.8	-98.7	83.2
2c ^{d)}	-12.0	-170.1 (167.0)	23.0	3b	-21 .7	-111.4	113.8

^{a)} Chemische Verschiebungen rel. zu 85proz. H₃PO₄ ext., Lösungsmittel C₆D₆. $-^{b)}$ X, Y = H, D, Li, SiMe₃, Werte in Klammern: ¹J(PH). $-^{c)}$ ¹J(PD). $-^{d)}$ Lösungsmittel THF.

Durch Umsetzung mit *n*BuLi in THF bei $-78 \,^{\circ}$ C läßt sich 2 in das Lithiumderivat 2c [$\delta P(A) = -12.0, \delta P(B) =$ $-170.1, {}^{2}J[P(A),P(B)] = 23.0, {}^{1}J[P(B),H] = 167.0 \text{ Hz}]$ überführen (Gl. 8). Bei Raumtemperatur zerfällt 2c in Ph₂PLi und eine Reihe bislang nicht identifizierter Produkte. Mit Me₃SiCl reagiert 2c unter Bildung von 2d. Daneben erhält man, wohl als Ergebnis einer Ummetallierungsreaktion (Gl. 12), 2 und 2e (Gl. 9, 13). Mit CD₃OD liefert 2c das Deuteriumderivat 2a (Gl. 7).

Versuche, 2 mit zwei Äquivalenten *n*BuLi bei 0 bis $-78 \,^{\circ}$ C in das zweifach metallierte Derivat 2f zu überführen, waren erfolglos (Gl. 11). Das ³¹P{¹H}- und ³¹P-NMR-Spektrum der Reaktionsmischung zeigt lediglich das Vorliegen des monometallierten Derivates 2c an. Gibt man Me₃SiCl zu, so bildet sich jedoch das zweifach silylsubstituierte Derivat 2e in guter Ausbeute (Gl. 10). Seine Bildung läßt sich durch Metallierung des aus 2c und Me₃SiCl gebildeten 2d mit überschüssigem *n*BuLi und nachfolgender Reaktion des dabei resultierenden Ph₂P-CH₂-P(SiMe₃)Li mit Me₃SiCl plausibel machen.

Die Metallierung von 3 mit *n*BuLi verläuft selbst bei $-78\,^{\circ}$ C unter Bruch des P-C-P-Skeletts in unübersichtlicher Weise. Das ${}^{31}P{}^{1}H{}$ -NMR-Spektrum des Reaktionsgemisches enthält neben Ph₂PLi ($\delta P = -23.0$) eine Vielzahl von Signalen, die bislang nicht zugeordnet werden konnten. Wird dagegen *t*BuLi eingesetzt, so gelingt die Metallierung glatt. Das Li-Derivat **3a** läßt sich mit Me₃SiCl in das Silylphosphan **3b** überführen (Gl. 14, 15).

$$\begin{array}{c|c} \mathsf{Ph}_2\mathsf{P} & \mathsf{PH} & \mathsf{PPh}_2 \underbrace{\mathsf{tBuLi}}_{(14)} & \mathsf{Ph}_2\mathsf{P} & \mathsf{P} & \mathsf{PPh}_2 \underbrace{\mathsf{Me}_3\mathsf{SiCl}}_{(15)} & \mathsf{Ph}_2\mathsf{P} & \mathsf{P} & \mathsf{PPh}_2\\ 3 & & \mathsf{Li} & & \mathsf{SiMe}_3\\ & & 3 \alpha & & 3 b \end{array}$$

NMR-spektroskopische Charakterisierung von 2, 2e und 3

Die beiden H-Atome der CH₂- und PH₂-Gruppen von 2 sind magnetisch nicht äquivalent. Das ¹H-NMR-Spektrum des CH₂PH₂-Fragments repräsentiert dementsprechend den AA'BB'-Teil eines AA'BB'XY-Spinsystems [A, A' = H(CH₂), B, B' = H(PH₂), X = ³¹P(PPh₂), Y = ³¹P(PH)] (Abb. 1a). Die Entkopplung beider ³¹P-Kerne P(X) und P(Y) führt zum Kollabieren des Dubletts von Multipletts bei δ = 2.64, das wir der PH₂-Gruppierung zuordnen. Das resultierende Linienmuster (Abb. 1b) entspricht in guter Näherung dem eines AA'BB'-Spinsystems [A, A' = H(CH₂); B, B' = H(PH₂)]¹³ mit großer relativer Shiftdifferenz von A und B. Unter Verwendung des aus der Analyse erhaltenen Parametersatzes für ⁿJ(HH) (n = 2, 3) [J(AB), J(AB'), J(AA'), J(BB')] konnte das ¹H-NMR-Spektrum rechnerisch simuliert werden (Abb. 1, Tab. 2).

Infolge der asymmetrischen Substitution am medialen P-Atom [P(Y)] sind die H-Atome der CH₂-Gruppierungen

Abb. 1. NMR-Spektrum von 2: a) experimentelles und simuliertes ¹H-NMR-Spektrum, b) {³¹P}¹H-NMR-Spektrum

	SiMe ₃	13 CH ₂	⁶ C{ ¹ H}-NMR ^{a)} C1 ^{c)}	C2	C3	C4	CH_2	¹ H-NM PH/PH ₂	R ^{d)} Ph	SiMe ₃
2 ^{b)}	-	9.2 dd (27.2; 15.5)	138.6 d (14.3)	132.2 d (18.8)	128.1 d (6.8)	128.4 s	1.6 m ^{e)}	2.6 m ^{e)}	6.9 m	_
2e ^{f)}	1.2 dd (11.4; 2.2)	13.8 t (48.5)	140.3 dd (16.4; 7.0)	133.2 dd (18.6; 1.3)	128.6 d (13.1)	128.8 s —	2.3 d (3.0)	_	7.3 m	0.2 d (4.4) ¹⁾
3 ^{b)}		18.7 ddd (26.0; 20.6;	138.9 dd ^{g)} (15.5; 2.4) ^{h)}	132.2 t (37.1)	128.3 t ^{g)} (18.2)	128.1 s	2.1 m ^{i,j)}	3.3 m ⁱ⁾	7.4 m	—
		11.4)	138.4 dd ^{g)} (19.7; 5.2) ^{h)}		128.0 t ^{g)} (14.4)	128.3 s	2.2 m ^{i,j)}			
3 b ^{f)}	-1.5 dt (10.7; 2.8)	22.2 ddd (27.6; 24.1; 9.7)	$\begin{array}{c} 140.5 \ dd^{g)} \\ (16.7; \ 6.7)^{h)} \\ 140.0 \ dd^{g)} \\ (14.9; \ 5.2)^{h)} \end{array}$	133.2 d ^{g)} (19.5)	128.7 d ^{g)} (3.2) 128.6 d ^{g)} (2.8)	128.8 s	2.3 d ^{j,k)} (11.5) 2.5 d ^{j,k)}	_	7.3 m	0.2 d (4.1) ¹⁾

Tab. 2. ¹³C{¹H}- und ¹H-NMR-Daten der Verbindungen 2, 2c, 3 und 3b

 $\frac{1}{3} \delta({}^{13}\text{C}) \text{ rel. zu TMS; Kopplungskonstanten } {}^{7}J(\text{PC}) (n = 1-3), N = {}^{7}J(\text{PC}) + {}^{7}J(\text{PC}) (n \neq n'; n' = 3-5) \text{ in Hz.} - {}^{b)} Lösungsmittel CD_{2}Cl_{2} - {}^{o}C-1 \text{ bis } C-4 = C-\text{Atome von Ph Indizierung; siehe Formel B.} - {}^{d)} \delta\text{H rel. zu TMS.} - {}^{e)} {}^{1}J(\text{PH}) = 197.1; {}^{2}J[\text{P}(\text{PH}_{2}),\text{H}] = 6.0; {}^{2}J[\text{P}(\text{PPh}_{2}),\text{H}] = 0.9; {}^{2}J(\text{HH}) = -13.8 (\text{CH}_{2}); {}^{2}J(\text{HH}) = -12.4 (\text{PH}_{2}); {}^{3}J(\text{HH}) = 10.5, 5.1 \text{ Hz.} - {}^{0} Lösungsmittel C_{6}D_{6} - {}^{B}C-10.0 \text{ C} C_{6} + {}^{2}C_{6}C_{6} + {}^{2}C_$

von 3 chemisch jeweils inäquivalent (H_a, H_b). Die ¹H- und ³¹P-Kernspins repräsentieren ein AA'BB'CXX'Y-Spinsystem [A, A' = H_a(CH₂); B, B' = H_b(CH₂); C = H(PH); X, X' = P(PPh₂); Y = P(PH)]. Das linienreiche ¹H-NMR-Spektrum von 3 (Abb. 2) wird durch ³¹P-Entkopplung (³¹PPh₂ und ³¹PH) in das Linienmuster eines entarteten AA'BB'C-Spinsystems übergeführt [J(AA'), J(BB'), J(AB') \approx 0], aus dem Werte für die Kopplungskonstanten ⁿJ(HH) (n = 2, 3) entnommen werden können. Die Simulation des ¹H-NMR-Spektrums (Abb. 2) liefert Werte für ⁿJ(PH) (n = 1, 2, 3) (Tab. 2). In Übereinstimmung mit der Literatur¹⁴ besitzen die Kopplungskonstanten zwischen geminalen bzw. vicinalen H-Atomen unterschiedliche Vorzeichen. Die Kopplungskonstanten ${}^{3}J(HH)$ zwischen dem Pständigen H und den chemisch nicht äquivalenten H-Atomen der CH₂-Gruppen sind innerhalb der Linienbreite ($v_{1/2} = 0.4$ Hz) gleich groß (7.2 Hz). Während die Kopplungskonstanten ${}^{2}J[P(PPh_{2}),(H_{a},H_{b})]$ sehr klein sind (0-1 Hz), unterscheiden sich die Werte von ${}^{2}J[P(PH),$ (H_a,H_b)] für die beiden inäquivalenten H-Atome (H_a,H_b) der CH₂-Gruppen deutlich (0.7 bzw. 8.3 Hz).

Nach der von Gagnaire et al.¹⁵⁾ aufgestellten Karplus-Beziehung zwischen ²J(PH) und dem Diederwinkel α im Verband H-C-P-freies Elektronenpaar zeigen die gerin-

gen Werte von ${}^{2}J[P(PPh_{2}),(H_{a},H_{b})]$ an, daß in den bevorzugten Konformeren (z. B. A) die freien Elektronenpaare an den terminalen P-Atomen einen Interplanarwinkel α von ca. 90 bzw. 170° mit den H-Atomen der benachbarten CH₂-Gruppe bilden. Die beiden unterschiedlichen Werte von ${}^{2}J[P(PH), (H_{a},H_{b})]$ legen nahe, daß die beiden H-Atome H_a,H_b jeweils unterschiedliche Winkel mit dem freien Elektronenpaar am mittleren P-Atom bilden.

Infolge der asymmetrischen Substitution an P(Y) sind die C-Atome C-1 und C-1' der PPh₂-Gruppierungen chemisch inäquivalent (B). Im ¹³C{¹H}-NMR-Spektrum von 3 beobachtet man dementsprechend zwei Dubletts von Dubletts [Kopplung ¹J(PC) und ³J(PC)] (Tab. 2). 2 und 2e mit den PX₂-Gruppierungen (X = H, SiMe₃) ergeben im ¹³C{¹H}-NMR-Spektrum erwartungsgemäß nur ein Signal, das durch P-C-Kopplung in ein Dublett (2) bzw. ein Dublett von Dubletts (2e) aufgespalten ist.

Die Kernspins der Brücken-C-Atome in 2 bzw. 3 stellen den X-Teil von ABX- bzw. ABCX-Spinsystemen dar (A, $C = PPh_2$; B = PH; $X = {}^{13}C$). Der Wert von 11.4 Hz für die Kopplungskonstante ${}^{3}J[P(PPh_2)-C-P-CH_2]$ in 3 deutet auf einen hohen Anteil von Konformeren (z. B. A) mit *trans*-Position der CH₂-Gruppen und der P-Atome der terminalen PPh₂-Einheiten hin¹⁶.

Die Kopplungskonstanten ²J(PP) in den Methylenbis-(phosphanen) Ph₂P-CH₂-PX₂ zeigen eine ausgeprägte Abhängigkeit von der Raumerfüllung der Substituenten X. Innerhalb der Substitutionsreihen 2 (22.0), 2d (72.0), 2e (124.0) und 2, Ph₂P-CH₂-PPhH (72.5)³, Ph₂P-CH₂-PPh₂ (125.0 Hz)¹⁷⁾ nimmt ²J(PP) (Hz) mit wachsendem Raumbedarf der Substituenten deutlich zu. Entsprechendes gilt für H₂P-CH₂-PH₂ und die primär-sekundären bzw. tertiär-sekundären Methylenbis(phosphane) H₂P-CH₂-PRH und R₂P-CH₂-PRH (R = H, Me, CH₂Ph, *i*Pr, *t*Bu)^{2,18)}. Auch im Falle der Triphosphaalkane mit P-C-P-C-P-Gerüst hat die Einführung sperriger Reste ein signifikantes Anwachsen von ²J(PP) (Hz) zur Folge [vgl. 3 (70.9) und (R₂P-CH₂)₂PR; R = Me (91.5)^{19,20}, Ph (173.6)²¹, CH₂Ph (174.4)¹⁸].

Durch Kombination von Röntgenstrukturuntersuchungen mit NMR-Studien bei variabler Temperatur konnte gezeigt werden, daß in Systemen $R_2P-X-PR_2$ (R = F, Cl, Ph; X = NR', R' = Me, Et, tBu; $X = CH_2$, R = Ph) die Konformation I ($C_{2\nu}$) große (positive), II (C_s) dagegen kleine (negative) Kopplungskonstanten ${}^{2}J(P-X-P)$ aufweist ${}^{(7,22)}$.

Nach diesen Befunden sollte 2 mit der kleinen Kopplungskonstanten bevorzugt in Konformeren (z. B. des Typs Lineare Oligophosphaalkane, XXV

II) mit großem Abstand der freien Elektronenpaare an den beiden P-Atomen vorliegen.

Der Deutschen Forschungsgemeinschaft gilt unser Dank für die Gewährung einer Sachbeihilfe, dem Fonds der Chemischen Industrie für finanzielle Unterstützung.

Experimenteller Teil

Arbeitsmethoden und Geräte siehe Lit.¹⁾

(Chlormethyl)diphenylphosphan (1): Eine Lösung von 13.9 g (0.050 mol) nBu₄NCl in 2.5 | CH₂Cl₂ und 0.5 | Toluol wurde unter kräftigem Rühren mit 200 g 56proz. wäßriger KOH (2.0 mol) versetzt. Zu der dabei gebildeten Emulsion wurden innerhalb von 3 h 186.2 g (1.0 mol) Ph₂PH getropft, und es wurde 1 h bei 20 °C weitergerührt. Die Reaktionsmischung wurde dreimal mit je 200 ml H₂O gewaschen, die organische Phase abgetrennt und i.Vak. (30-40°C/10 mbar) eingeengt. Als Rückstand verblieb 1 als klare viskose Flüssigkeit. Ausb. 232 g (99%).

[(Diphenylphosphino)methyl]phosphan (2): Die Emulsion von 100 g 56proz. wäßriger KOH in 1 l Toluol wurde nach Zugabe von 7.0 g (0.025 mol) nBu₄NCl bei einem Überdruck von 100 mbar mit PH₃ gesättigt. Anschließend wurden 117.3 g (0.50 mol) 1, gelöst in 200 ml Toluol, bei 60°C unter kräftigem Rühren im Verlauf von 1 h zugetropft. Nach Beendigung der PH₃-Absorption wurde auf Raumtemp, abgekühlt und das Reaktionsgemisch dreimal mit je 200 ml H₂O gewaschen. Die organische Phase wurde bei Normaldruck eingeengt und der verbleibende Rückstand i. Vak. fraktionierend destilliert. Das Destillat (Sdp. 107°C/0.05 mbar) kristallisierte bei Raumtemp. (Schmp. 39°C). Ausb. 98 g (84%).

> C₁₃H₁₄P₂ (232.2) Ber. C 67.24 H 6.08 Gef. C 67.05 H 5.93

Bis[(diphenylphosphino)methyl]phosphan (3): Zu einer Lösung von 117.3 g (0.50 mol) 1 und 7.0 g (0.025 mol) nBu₄NCl in 500 ml n-Octan wurden unter kräftigem Rühren 168.3 g (3.0 mol) KOH und 50 ml H₂O gegeben. Nach Erwärmen der dabei erhaltenen Suspension auf 80°C wurde PH₃ bis zu einem Überdruck von 100 mbar aufgepreßt. Dieser Druck wurde im Verlauf der Reaktion durch Zudosieren von PH₃ konstant gehalten. Nach Beendigung der PH₃-Absorption (ca. 1 h) wurde die Reaktionsmischung auf Raumtemp. abgekühlt, mit 200 ml H2O versetzt und die organische Phase abgetrennt. Der nach Entfernen aller flüchtigen Anteile i. Vak. verbleibende Rückstand wurde aus Ethanol umkristallisiert. Ausb. 76.0 g (71%).

> C₂₆H₂₅P₃ (430.4) Ber. C 72.56 H 5.85 P 21.59 Gef. C 71.17 H 6.04 P 20.53

{[Bis(trimethylsilyl)phosphino]methyl}diphenylphosphan (2e): Eine Lösung von 2.3 g (10 mmol) 2 in 50 ml THF wurde bei -78 °C innerhalb von 1 h mit 12.5 ml einer 1.6 M nBuLi-Lösung in n-Hexan versetzt. Anschließend wurde 1 h gerührt, und 2.16 g (20 mmol) Me₃SiCl wurden zugegeben. Nach 3stdg. Rühren wurde das Lösungsmittel bei 20°C/0.1 mbar entfernt, der Rückstand in 50 ml Petrolether $(40-60^{\circ}C)$ aufgenommen und die Lösung filtriert. Nach Entfernen des Lösungsmittels (20°C/0.01 mbar) blieb 2e als farbloses viskoses Öl zurück. Ausb. 2.8 g (74%).

> C19H30P2Si2 (376.6) Ber. C 60.60 H 8.03 P 16.45 Gef. C 61.46 H 8.11 P 16.09

Bis[(diphenylphosphino)methyl](trimethylsilyl)phosphan (3b): Zu einer Lösung von 2.2 g (5.0 mmol) 3 in 50 ml THF wurden bei

-78°C innerhalb von 1 h 3.4 ml einer 1.6 м tBuLi-Lösung in Pentan getropft. Bei dieser Temperatur wurde 1 h gerührt, und anschließend wurden 0.54 g (5.0 mmol) Me₃SiCl zugegeben. Es wurde 3 h gerührt, dann das Lösungsmittel bei 20°C/0.1 mbar entfernt, der Rückstand in 50 ml Petrolether (40-60°C) aufgenommen und filtriert. Nach Entfernen des Lösungsmittels (20°C/0.01 mbar) blieb 3a als blaßgelbes viskoses Öl zurück. Ausb. 2.2 g (88%).

> C₂₉H₃₃P₃Si (502.6) Ber. C 69.31 H 6.62 Gef. C 70.51 H 6.63

CAS-Registry-Nummern

1: 57137-53-8 / 2: 72797-85-4 / 2e: 125685-69-0 / 3: 125685-68-9 / 3b: 125685-70-3 / Ph₂PH: 829-85-6 / PH₃: 7803-51-2

- ¹⁾ XXIV. Mitteilung: G. Heßler, P. C. Knüppel, O. Stelzer, W. S. Sheldrick, *Chem. Ber.* **123** (1990) 653. ²⁾ S. Hietkamp, H. Sommer, O. Stelzer, *Chem. Ber.* **117** (1984) 3400.
- ³⁾ F. Gol, G. Hasselkuß, P. C. Knüppel, O. Stelzer, Z. Naturforsch.,
- Teil B, 43 (1988) 31. ⁴⁾ D. J. Brauer, S. Hietkamp, H. Sommer, O. Stelzer, J. Organomet. Chem. 281 (1985) 187.
- ⁵⁾ D. J. Brauer, S. Hietkamp, H. Sommer, O. Stelzer, Z. Na-turforsch., Teil B, 40 (1985) 1677; D. J. Brauer, G. Hasselkuß, S. Hietkamp, H. Sommer, O. Stelzer, ibid. 40 (1985) 961.
- ⁶⁾ L. Manojlovic-Muir, B. R. Lloyd, R. J. Puddephatt, J. Chem. Soc., Dalton Trans. 1987, 201.
- ³ D. J. Brauer, P. C. Knüppel, O. Stelzer, J. Chem. Soc., Chem. Commun. 1988, 551; F. Gol, P. C. Knüppel, O. Stelzer, W. S. Sheldrick, Angew. Chem. 100 (1988) 1008; Angew. Chem. Int. Ed. Engl. 27 (1988) 956.
- ⁸⁾ P. H. Blustin, J. Chem. Phys. 66 (1977) 5648.
- 9 H. Weichmann, B. Ochsler, I. Duchek, A. Tzschach, J. Organomet. Chem. 182 (1979) 465. ¹⁰⁾ ^{10a} Hoechst AG (O. Stelzer, K. P. Langhans, J. Svara, N. Wefer-
- ling, Inv.), Eur. Pat. 307,702 und 307, 717 [Chem. Abstr. 111 (1989) 97500j und 97501k]. ^{10b)} K. P. Langhans, O. Stelzer, (1989) 97500j und 97501k]. – Chem. Ber. **120** (1987) 1707.
- ¹¹⁾ ^{11a)} H. von Hellmann, J. Bader, H. Birkner, O. Schumacher, Liebigs Ann. Chem. **659** (1962) 49. – ^{11b)} S. O. Grim, R. C. Barth, J. Organomet. Chem. **94** (1975) 327. – ^{11c)} E. Lindner, P. Neese, W. Hiller, R. Fawzi, Organometallics 5 (1986) 2030.
- ¹²⁾ C. Charrier, F. Mathey, *Tetrahedron Lett.* 27 (1978) 2407.
 ¹³⁾ J. W. Emsley, J. Feeney, L. H. Sutcliffe, *High Resolution Magnetic* Resonance Spectroscopy, Bd. 1, Pergamon Press, Oxford, London, Sydney, Edinburgh, New York, Toronto, Paris, Braunschweig 1966.
- ¹⁴⁾ H. Booth in Progress in Nuclear Magnetic Resonance Spectroscopy (J. W. Emsley, J. Feeney, L. H. Sutcliffe, Hrsg.), Bd. 5, S. 149, Pergamon Press, Oxford, London, Edinburgh, New
- York, Toronto, Sydney, Paris, Braunschweig, 1969. ¹⁵⁾ W. G. Bentrude, W. N. Setzer in *Phosphorus-31-NMR Spectros*copy in Stereochemical Analysis (J. G. Verkade, L. D. Quin, Hrsg.), S. 365, VCH Publishers, Deerfield Beach 1987; J. P. Ne-brand, D. Gagnaire, M. Picard, J. B. Robert, Tetrahedron Lett. 1970, 4593; J. D. Albrand, D. Gagnaire, J. Martin, J. B. Robert, Bull. Soc. Chim. Fr. 1969, 40.
- ¹⁶⁾ L. D. Quin, M. D. Gordon, S. O. Lee, Org. Magn. Reson. 6 (1974) 503.
- ¹⁷⁾ I. J. Colquhoun, W. McFarlane, J. Chem. Soc., Dalton Trans.
- 1982, 1915. ¹⁸⁾ P. C. Knüppel, *Dissertation*, Bergische Univ.-GH Wuppertal,
- ¹⁹ D. J. Brauer, S. Hietkamp, H. Sommer, O. Stelzer, G. Müller, M. Romao, C. Krüger, J. Organomet. Chem. 296 (1985) 411. ²⁰⁾ H. H. Karsch, Z. Naturforsch., Teil B, 37 (1982) 284.

- R. Keat, L. Manojlovic-Muir, K. W. Muir, D. S. Rycroft, J. Chem. Soc., Dalton Trans. 1981, 2192. [380/89]